x^2-5x^2+20+6(x^2+1+8x)=0

Simple and best practice solution for x^2-5x^2+20+6(x^2+1+8x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-5x^2+20+6(x^2+1+8x)=0 equation:



x^2-5x^2+20+6(x^2+1+8x)=0
We add all the numbers together, and all the variables
-4x^2+6(x^2+1+8x)+20=0
We multiply parentheses
-4x^2+6x^2+48x+6+20=0
We add all the numbers together, and all the variables
2x^2+48x+26=0
a = 2; b = 48; c = +26;
Δ = b2-4ac
Δ = 482-4·2·26
Δ = 2096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2096}=\sqrt{16*131}=\sqrt{16}*\sqrt{131}=4\sqrt{131}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-4\sqrt{131}}{2*2}=\frac{-48-4\sqrt{131}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+4\sqrt{131}}{2*2}=\frac{-48+4\sqrt{131}}{4} $

See similar equations:

| x-3/4x-0.18x=313.5 | | 4x^-9=55 | | 8y-5=-13 | | 4y-27=20 | | -(n^2)-39n+348=0 | | 3(3x-5)+5(x-3)=6 | | -4y-6=-5 | | 3x-5/5+x-3/3=6 | | 2.6666666667c-2=0.66666667c-12 | | (n^2)+39n-348=0 | | 9x^212x=0 | | 8/z-2=1 | | 20-x^2=x | | 20-x^×=x | | y/10+8=-5 | | x/10+3=-3 | | 2y-6=10y+10 | | y^2+15y=8y | | x/60+2400-x/120=30 | | ?x5=7.5 | | -7y+2=y+18 | | 8z-2=1 | | 3x+8/2x+8=11/8 | | (4n^2)-58n+190=0 | | 10-(x+2)=7x | | 3x²-11x=8 | | -7x+57=12x | | 2x+4x=6x-18 | | 13(x-4)-3(x-9)=5(x+4) | | 13(x-4)-3(x-9)=5(x=4) | | 8x-9=4x-81 | | 8x+18=2x-18 |

Equations solver categories